#### Департамент образования Вологодской области бюджетное профессиональное образовательное учреждение Вологодской области

### «ВОЛОГОДСКИЙ СТРОИТЕЛЬНЫЙ КОЛЛЕДЖ»

#### **PACCMOTPEH**

на заседании предметно-цикловой комиссии общеобразовательных дисциплин Председатель предметно-цикловой комиссии Малкова С.Л. Протокол № 9 от «23» мая 2017 г.

#### **УТВЕРЖДЕНО**

приказом директора БПОУ ВО «Вологодский строительный колледж» № 225 - УД от «20» июня 2017 г.

## Комплект контрольно-оценочных средств по учебной дисциплине «Физика»

#### Специальности

- 21.02.04. Землеустройство
- 21.02.05. Земельно-имущественные отношения
- 08.02.01. Строительство и эксплуатация зданий и сооружений
- 08.02.07. Монтаж и эксплуатация внутренних сантехнических устройств кондиционирования воздуха и вентиляции
- 08.02.05. Строительство и эксплуатация автомобильных дорог и аэродромов
- 35.02.03. Технология деревообработки

Разработчик: **Пантина Галина Валерьевна** 

### Содержание

| 1. |                   |                | КОНТРОЛ         | ьно-оценочных   | 3      |
|----|-------------------|----------------|-----------------|-----------------|--------|
| 2. |                   |                | УЧЕБНОЙ         | ДИСЦИПЛИНЫ,     | 6      |
| 3. | •                 |                | і дисциплины    | ······          | 7<br>7 |
|    |                   |                |                 |                 | 8      |
|    | 3.3. МАТЕРИАЛЫ Т  | ГЕКУЩЕГО КОНТ  |                 |                 | 9      |
|    | 3.4. ПЕРЕЧЕНЬ ПРА | АКТИЧЕСКИХ(ЛАІ | БОРАТОРНЫХ) РАБ | OTTC            | 20     |
|    |                   |                | , ,             | САМОСТОЯТЕЛЬНОЙ | 22     |
|    |                   |                |                 |                 | 23     |

## 1. ПАСПОРТ КОМПЛЕКТА КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ

Комплект контрольно-оценочных средств (далее - КОС) по дисциплине «Физика» предназначен для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Физика». КОС включают контрольные материалы для проведения текущего контроля и промежуточной аттестации в формах дифференцированного зачета и экзамена.

КОС разработаны на основании программы учебной дисциплины «Физика». Используемые в КОС оценочные средства представлены в таблице 1.

Таблица 1 – Оценочные средства

| Разделы (темы)           | Оценочное средство |                        |               |
|--------------------------|--------------------|------------------------|---------------|
| , , , ,                  | Входной            | Текущий контроль       | Промежуточная |
|                          | контроль           |                        | аттестация    |
| 1                        | 2                  | 3                      | 4             |
| Раздел 1. МЕХАНИКА       |                    |                        |               |
| Тема 1.1. Кинематика     | Контрольная        | Практическая работа    |               |
|                          | работа             | Лабораторная работа    |               |
| Тема 1.2. Законы         |                    | Практическая работа    |               |
| механики Ньютона         |                    | Лабораторная работа    |               |
| Тема 1.3. Законы         |                    | Практическая работа    |               |
| сохранения в механике    |                    |                        |               |
| Тема 1.4.Механические    |                    | Задание №1 для         |               |
| колебания и волны        |                    | самостоятельной работы |               |
|                          |                    | с учебником            |               |
|                          |                    | Лабораторная работа    |               |
| Раздел 2.                |                    |                        |               |
| ОСНОВЫ                   |                    |                        |               |
| МОЛЕКУЛЯРНОЙ             |                    |                        |               |
| ФИЗИКИ И                 |                    |                        |               |
| ТЕРМОДИНАМИКИ            |                    |                        |               |
| Тема 2.1. Основы         |                    | Практические           |               |
| молекулярно-             |                    | работы                 |               |
| кинетической теории.     |                    | Лабораторная работа    |               |
| Идеальный газ.           |                    |                        |               |
| Тема 2.2. Основы         |                    | Практическая работа    |               |
| термодинамики            |                    | Задание №2 для         |               |
|                          |                    | самостоятельной работы |               |
|                          |                    | по решению задач       |               |
|                          |                    | Задание №3 для         |               |
|                          |                    | самостоятельной работы |               |
|                          |                    | с учебником            |               |
|                          |                    | Контрольная работа №1  |               |
| Тема 2.3. Свойства паров |                    | Лабораторная работа    |               |
| _                        |                    | Задание №4 для         |               |
|                          |                    | самостоятельной работы |               |
|                          |                    | с дидактическим        |               |
|                          |                    | материалом             |               |

| 1                                      | 2 3                      | 4        |
|----------------------------------------|--------------------------|----------|
| Тема 2.4.Свойства                      | Лабораторная работа      | <u>-</u> |
| жидкостей                              | Задание №5 для           |          |
|                                        | самостоятельной работы   |          |
|                                        | с дидактическим          |          |
|                                        | материалом               |          |
| Раздел 3. ЭЛЕКТРО-<br>ДИНАМИКА         | •                        |          |
| Тема 3.1. Электрическое                | Практические работы      |          |
| поле                                   | Tipukiii teekiie puootzi |          |
| Тема 3.2. Законы                       | Практическая             |          |
| постоянного тока                       | работа                   |          |
|                                        | Лабораторные работы      |          |
|                                        | Задание №6 для           |          |
|                                        | самостоятельной работы   |          |
|                                        | по решению задач         |          |
| Тема 3.3. Электрический                | Практическая работа      |          |
| ток в различных средах                 | Задание №7 для           |          |
|                                        | самостоятельной работы   |          |
|                                        | с дидактическим          |          |
|                                        | материалом               |          |
|                                        | Контрольная работа №3    |          |
| Тема 3.4. Магнитное поле               | Практическая работа      |          |
| Тема 3.5.                              | Задание №8 для           |          |
| Электромагнитная                       | самостоятельной работы   |          |
| индукция                               | с дидактическим          |          |
|                                        | материалом               |          |
|                                        | Лабораторная работа      |          |
|                                        | Контрольная работа №2    |          |
| Тема 3.6.                              | Физический диктант       |          |
| Электромагнитные                       |                          |          |
| колебания                              |                          |          |
| Раздел 4. ОПТИКА                       |                          |          |
| Тема 4.1. Природа света.               | Лабораторная работа      |          |
| Тема 4.2. Волновые                     | Задание №9 для           |          |
| свойства света                         | самостоятельной работы   |          |
|                                        | с дидактическим          |          |
|                                        | материалом               |          |
|                                        | Практическая работа      |          |
|                                        | Лабораторная работа      |          |
|                                        | Задание №10              |          |
|                                        | для самостоятельной      |          |
|                                        | работы с учебником       |          |
| Раздел 5. ЭЛЕМЕНТЫ<br>КВАНТОВОЙ ФИЗИКИ |                          |          |
| Тема 5.1. Квантовая оптика             | Практическая работа      |          |

| 1                        | 2 | 3                      | 4              |
|--------------------------|---|------------------------|----------------|
| Тема 5.2. Физика атома и |   | Задание №11 для        |                |
| атомного ядра            |   | самостоятельной работы |                |
|                          |   | с дидактическим        |                |
|                          |   | материалом             |                |
|                          |   | Задание №12 для        |                |
|                          |   | самостоятельной работы |                |
|                          |   | с дидактическим        |                |
|                          |   | материалом             |                |
|                          |   | Задание №13 для        |                |
|                          |   | самостоятельной работы |                |
|                          |   | с дидактическим        |                |
|                          |   | материалом             |                |
|                          |   | Контрольная работа №3  |                |
| Зачет,                   |   |                        | Дифференци-    |
| дифференцированный       |   |                        | рованный зачет |
| зачет,                   |   |                        |                |
| экзамен                  |   |                        | Экзамен        |

### 2. РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ, ПОДЛЕЖАЩИЕ ПРОВЕРКЕ

**Контроль и оценка** результатов освоения дисциплины осуществляется преподавателем в процессе проведения практических и лабораторных занятий, контрольных работ, а также выполнения обучающимися индивидуальных заданий, проектов, исследований (таблица2).

Таблица 2 – Контроль и оценка результатов обучения

| Результаты обучения<br>(освоенные умения, усвоенные знания)                                                                                                                                                                                                                                              | Формы контроля и<br>оценки результатов<br>обучения                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| 1                                                                                                                                                                                                                                                                                                        | 2                                                                               |
| Умения                                                                                                                                                                                                                                                                                                   |                                                                                 |
| использовать достижения современной физической науки и физических технологий для повышения собственного интеллектуального развития в выбранной профессиональной деятельности                                                                                                                             | Проект                                                                          |
| самостоятельно добывать новые для себя физические знания, используя для этого доступные источники информации                                                                                                                                                                                             | проект,<br>реферат                                                              |
| выстраивать конструктивные взаимоотношения в команде по решению общих задач                                                                                                                                                                                                                              | лабораторные работы                                                             |
| управлять своей познавательной деятельностью, проводить самооценку уровня собственного интеллектуального развития использование различных видов познавательной деятельности для решения физических задач, применение основных методов познания для изучения различных сторон окружающей действительности | контрольные работы, лабораторные работы контрольные работы, практические работы |

| 1                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| использование основных интеллектуальных операций: постановки задачи, формулирования гипотез, анализа и синтеза, сравнения, обобщения, систематизации, выявления причинно-следственных связей, поиска аналогов, формулирования выводов для изучения различных сторон физических объектов, явлений и процессов, с которыми возникает необходимость сталкиваться в профессиональной сфере | контрольные работы, практические работы, лабораторные работы                        |
| генерировать идеи и определять средства, необходимые для их реализации                                                                                                                                                                                                                                                                                                                 | Проект                                                                              |
| использовать различные источники для получения физической информации, оценивать ее достоверность                                                                                                                                                                                                                                                                                       | Проект                                                                              |
| анализировать и представлять информацию в различных видах                                                                                                                                                                                                                                                                                                                              | практические работы                                                                 |
| публично представлять результаты собственного исследования, вести дискуссии, доступно и гармонично сочетая содержание и формы представляемой информации                                                                                                                                                                                                                                | защита проекта,<br>практические работы                                              |
| решать физические задачи                                                                                                                                                                                                                                                                                                                                                               | контрольные работы, практические работы                                             |
| применять полученные знания для объяснения условий протекания физических явлений в природе, профессиональной сфере и для принятия практических решений в повседневной жизни                                                                                                                                                                                                            | проект, контрольные работы, практические работы                                     |
| Знания                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                     |
| представлений о роли и месте физики в современной научной картине мира; понимание физической сущности наблюдаемых во Вселенной явлений, роли физики в формировании кругозора и функциональной грамотности человека для решения практических задач                                                                                                                                      | практические работы, проект, дифференцированный зачет, экзамен                      |
| владение основополагающими физическими понятиями, закономерностями, законами и теориями; уверенное использование физической терминологии и символики                                                                                                                                                                                                                                   | практические работы, лабораторные работы, проект, дифференцированный зачет, экзамен |
| владение основными методами научного познания, используемыми в физике: наблюдением, описанием, измерением, экспериментом                                                                                                                                                                                                                                                               | практические работы, лабораторные работы, проект, дифференцированный зачет, экзамен |

# 3. ОЦЕНКА ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ 3.1. Критерии оценки

Предметом оценки освоения дисциплины являются личностные, метапредметные и предметные умения, знания. Соотношение типов задания и критериев оценки представлено в таблице 3.

Таблица 3 – Типы заданий и критерии оценки

| No | Тип (вид) задания               | Критерии оценки                         |  |
|----|---------------------------------|-----------------------------------------|--|
| 1. | Тесты                           | Таблица 4. Шкала оценки образовательных |  |
|    |                                 | достижений                              |  |
| 2. | Устные ответы                   | Таблица 5. Показатели оценки устных     |  |
|    |                                 | ответов                                 |  |
| 3. | Практическая работа             | Выполнение не менее 80% –               |  |
|    |                                 | положительная оценка                    |  |
| 4. | Проверка конспектов, рефератов, | Соответствие содержания работы,         |  |
|    | творческих работ, презентаций   | заявленной теме; правилам оформления    |  |
|    |                                 | работы                                  |  |

Таблица 4 - Шкала оценки образовательных достижений (тестов)

| Процент                                  | Оценка уровня подготовки |                     |  |
|------------------------------------------|--------------------------|---------------------|--|
| результативности<br>(правильных ответов) | балл (отметка)           | вербальный аналог   |  |
| 90 ÷ 100                                 | 5                        | Отлично             |  |
| 89 ÷ 80                                  | 4                        | Хорошо              |  |
| 79 ÷ 70                                  | 3                        | Удовлетворительно   |  |
| менее 70                                 | 2                        | Неудовлетворительно |  |

Таблица 5 - Показатели оценки устных ответов

| Оценка     | Показатели оценки                                                         |  |  |  |
|------------|---------------------------------------------------------------------------|--|--|--|
| «5»        | Глубокое и полное владение содержанием учебного материала, в котором      |  |  |  |
|            | обучающийся легко ориентируется, умеет применить теоретические знания     |  |  |  |
|            | при решении практических ситуаций, высказать и обосновать свои суждения,  |  |  |  |
|            | грамотное и логичное построение высказывания                              |  |  |  |
| «4»        | Э Полное освоение учебного материала, грамотное его изложение, владение   |  |  |  |
|            | понятийным аппаратом, но содержание и/или форма ответа имеют отдельные    |  |  |  |
| недостатки |                                                                           |  |  |  |
| «3»        | Знание и понимание основных положений учебного материала, неполное        |  |  |  |
|            | и/или непоследовательное его изложение, неточности в определении понятий, |  |  |  |
|            | отсутствие обоснования высказываемых суждений                             |  |  |  |
| «2»        | 2» Незнание содержания учебного материала, неумение выделять главное и    |  |  |  |
|            | второстепенное, ошибки в определении понятий, искажающие их смысл,        |  |  |  |
|            | беспорядочное и неуверенное изложение материала                           |  |  |  |
| «1»        | Полное незнание и непонимание учебного материала или отказ отвечать       |  |  |  |

#### 3.2. Материалы входного контроля

#### Вариант №1.

Часть 1.

- 1. Допишите предложение: «Молекула это...»
- 2. Запишите формулу для вычисления силы тяжести.
- 3. Приведите примеры физических тел (не менее трех).
- 4. Представьте в системе СИ: 72 км/ч=...; 54 г=...; 6 кH=....
- 5. Опишите работу любого имеющегося у вас дома механизма (устройства, прибора) с точки зрения протекающих в нем физических процессов или преобразования различных видов энергии.

#### Часть 2. Решите задачи:

- 1. Автомобиль за 3 часа проехал 216 км. Определите скорость автомобиля.
- 2. На столе лежит брусок массой 1 кг. Изобразите силы, действующие на него. Чему равен вес бруска?
- 3. Определить массу воды [c=4190 Дж/(кг°C)], для нагревания которой от 30°C до 80°C требуется 838 кДж.
- 4. На цоколе лампочки карманного фонаря написано: 3,5 B; 0,28 A. Найти сопротивление лампочки в рабочем режиме.
- 5. Решаются две задачи:
  - А) рассчитывается маневр стыковки двух космических кораблей;
  - Б) рассчитывается период обращения космических кораблей вокруг Земли.
  - В каком случае космические корабли можно рассматривать как материальные точки?
  - 1) только в первом случае;
  - 2) только во втором случае;
  - 3) в обоих случаях;
  - 4) ни в первом, ни во втором случае.

#### Вариант №2.

Часть 1.

- 1. Допишите предложение: «Равномерное движение это...»
- 2. Запишите формулой закон Ома для участка цепи.
- 3. Приведите примеры физических явлений (не менее трех).
- 4. Представьте в системе СИ: 36 км/c=...; 32 т=...; 8 мДж=....
- 5. Опишите работу любого имеющегося у вас дома механизма (устройства, прибора) с точки зрения протекающих в нем физических процессов или преобразования различных видов энергии.

#### Часть 2. Решите задачи:

- 1. Когда мы говорим, что смена дня и ночи на Земле объясняется вращением Земли вокруг своей оси, то мы имеем в виду систему отсчета, связанную: А) с Солнцем; Б) с Землей; В) с планетами; Г) с любым телом.
- 2. Велосипедист движется со скоростью 5 м/с. Определить расстояние между пунктами A и B, если выехав из пункта A, он прибыл в пункт B через 2 часа.
- 3. Сопротивление лампы накаливания в рабочем режиме составляет 700 Ом при силе тока 0,3 А. Определить напряжение на лампе.
- 4. Какое количество теплоты требуется, чтобы нагреть олово [c=230Дж/(кг°C)] массой 4 кг от 20°C до 232°C.
- 5. Шарик массой 1 кг висит на нити. Изобразите силы, действующие на него. Чему равна сила тяжести, действующая на шарик?

#### 3.3. Материалы текущего контроля

### КОМПЛЕКТ ЗАДАНИЙ ДЛЯ ВЫПОЛНЕНИЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Задание №1 для самостоятельной работы по теме «Механические колебания»

- 1. Прочитайте материал по теме «Механические колебания»
- 2. Выпишите в тетрадь понятие волны, необходимое условие возникновения волн, понятие длины волны, формулы для расчета длины волны и скорости волны.

3. Подготовьте в тетради таблицу и заполните ее:

| <u>э.</u> подготог | 5. Hogi o tobbie b respagn raosing in sanosinite ee. |                      |              |  |  |  |
|--------------------|------------------------------------------------------|----------------------|--------------|--|--|--|
| Вид волны          | Понятие                                              | Где распространяются | Примеры волн |  |  |  |
| Продольная         |                                                      |                      |              |  |  |  |
| Поперечная         |                                                      |                      |              |  |  |  |

- 4. Составьте краткий конспект по теме «Звуковые волны. Применение звука».
- 5. Решите задачи:

**ЗАДАЧА №1.** Лодка качается на морских волнах с периодом 2 с. Определите длину морской волны, если она распространяется со скоростью 4 м/с.

**ЗАДАЧА №2.**Чему равна длина волны, распространяющейся со скоростью 5 м/с, в которой за 10 с успевают произойти 4 колебания?

**ЗАДАЧА №3.** При обнаружении с помощью эхолота косяка рыбы было замечено, что моменты отправления и приема звукового сигнала разделены промежутком времени 0,7 с. На каком расстоянии находился косяк рыбы, если скорость звука в воде 1400 м/с?

### Задание №2 для самостоятельной работы по решению задач по теме «Первое начало термодинамики»

Выберите в каждой группе одну задачу и решите в следующем порядке: 3.\*, 4.\*, 5. \*:

- 3.1. На рисунке показан процесс изменения состояния идеального газа. р
- а) Назовите процесс.
- б) Какую работу совершил газ, если ему сообщили в этом процессе 6 кДж теплоты?
- **3.2.** При медленном изотермическом процессе газу передано 8 МДж теплоты. Какую работу совершил газ? Что произойдет с его объемом?
- **3.3.** При сообщении газу 80 кДж теплоты он совершил работу 0,2 МДж. Чему V равно изменение внутренней энергии газа?

Что произойдет с газом (охлаждение или нагревание)?

- **4.1.** Для изобарного нагревания газа, количество вещества которого 800 моль, на 500 К сообщили количество теплоты 9,4 МДж. Определить работу газа и приращение внутренней энергии.
- **4.2**. Объем кислорода массой 160 г, температура которого 27°С, при изобарном нагревании увеличился вдвое. Найти работу газа при расширении, количество теплоты, которое пошло на нагревание кислорода, изменение внутренней энергии.
- **4.3.** Четыре моля углекислого газа нагреты при постоянном давлении на 100 К. Определить работу газа при расширении, изменение внутренней энергии газа и количество теплоты, сообщенное этому газу.
- **5.1**. При изобарном расширении двухатомного газа при давлении 100 кПа его объем увеличился на  $5 \text{ м}^3$ . Определить работу газа, изменение внутренней энергии и количество теплоты, сообщенное этому газу.
- **5.2.** При изобарном расширении 0,04 кг кислорода его температура изменяется на 6°С. Величина работы, совершенная во время этого процесса, равна 250 Дж. Какое количество теплоты было передано газу и чему равно изменение его внутренней энергии (с=916Дж/К).

**5.3.** Газ находится в сосуде под давлением 25 кПа. При сообщении газу 60кДж теплоты, он изобарно расширился и объем его увеличился на 2 м<sup>3</sup>. Насколько изменилась внутренняя энергия газа? Как изменилась температура газа?

### Задание №3 для самостоятельной работы с учебником по теме «Виды тепловых двигателей. Тепловые двигатели и охрана окружающей среды»

Составьте конспект по следующему плану:

- 1. Тепловые двигатели, их применение.
- 2. Влияние тепловых двигателей на окружающую среду, меры уменьшения отрицательного влияния на природу тепловых двигателей.

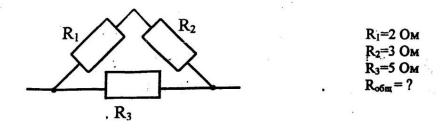
### Задание №4 для самостоятельной работы с дидактическим материалом по теме«Приборы, измеряющие влажность воздуха»

1. Начертите в тетради таблицу и заполните ее:

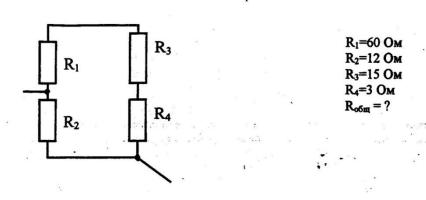
| Название прибора | Устройство | Принцип действия |
|------------------|------------|------------------|
|                  |            |                  |
|                  |            |                  |
|                  |            |                  |

2. Подготовьте устный ответ об устройстве и принципе действия указанных приборов

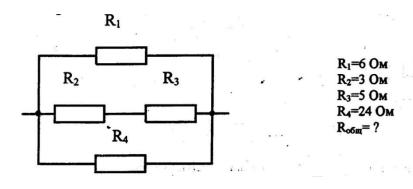
### Задание №5 для самостоятельной работы с дидактическим материалом по теме«Смачивание. Капиллярные явления»


Составьте конспект по следующему плану:

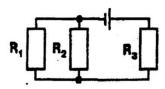
- 1. Смачивающая жидкость: понятие, примеры, рисунок, численное значение краевого угла
- 2. Несмачивающая жидкость: понятие, примеры, рисунок, численное значение краевого угла
- 3. Капиллярные явления: понятие, проявление и применение в быту, технике, строительстве, природе


### Задание №6 для самостоятельной работы по решению задач по теме «Закон Ома для полной пепи»

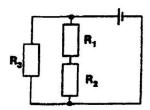
Решите задачи, номер и порядок которых определил преподаватель.


Задача №1. Рассчитайте эквивалентное сопротивление цепи:

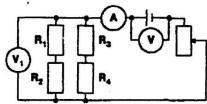



Задача №2. Рассчитайте эквивалентное сопротивление цепи:

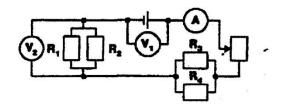



Задача №3. Рассчитайте эквивалентное сопротивление цепи:

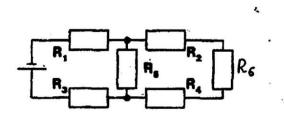



Задача №4. Определить силу тока в проводнике  $R_1$ и напряжение на концах $R_3$ , если ЭДС аккумулятора 4 B, его внутреннее сопротивление 0,6 Ом, а  $R_1$ =4 Ом,  $R_2$ =6 Ом,  $R_3$ =2 Ом.

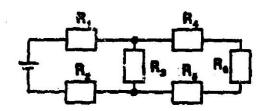



Задача №5. Определить силу тока в проводнике  $R_3$ , если ЭДС источника 2,1 B, его внутреннее сопротивление 1,2 Ом, а  $R_1$ =7 Ом,  $R_2$ =5 Ом,  $R_3$ =4Ом.




Задача №6. Определить показания всех приборов, если реостат полностью введен. ЭДС источника 12 В, внутреннее сопротивление 2 Ом,  $R_1$ =20 Ом,  $R_2$ =40 Ом,  $R_3$ = $R_4$ =30 Ом. Сопротивление реостата 28 Ом.




Задача №7. Найти силу тока в цепи и в сопротивлении  $R_3$ , если реостат полностью выведен из цепи. ЭДС источника 1,44 B, внутреннее сопротивление источника 0,2 Ом, а  $R_1$ = $R_2$ =1,2Ом,  $R_3$ =2 Ом,  $R_4$ =3 Ом.



Задача №8. Определить токи в каждом из сопротивлений, если ЭДС источника 10 В. Внутреннее сопротивление 1 Ом.  $R_1$ =3,5 Ом,  $R_2$ =2 Ом,  $R_3$ =4 Ом,  $R_4$ =4 Ом,  $R_5$ =2Ом,  $R_6$ =1,5Ом.



Задача №9. Сопротивление всех резисторов одинаковы и равны 2 Ом. Найти распределение токов и напряжений, если ЭДС источника 60 В, внутреннее сопротивление 1 Ом



## Задание №7 для самостоятельной работы с дидактическим материалом по теме«Типы самостоятельных разрядов»

1. Начертите в тетради таблицу и заполните ее:

|   | The reprinte B respudit successful successful to |               |         |            |  |  |
|---|--------------------------------------------------|---------------|---------|------------|--|--|
|   | Вид                                              | Условия       | Примеры | Применение |  |  |
|   | самостоятельного                                 | возникновения |         |            |  |  |
|   | разряда                                          |               |         |            |  |  |
|   |                                                  |               |         |            |  |  |
|   |                                                  |               |         |            |  |  |
|   | _                                                |               |         |            |  |  |
| ſ |                                                  |               |         |            |  |  |

2. Подготовьте устный ответ о различных видах самостоятельного разряда в газах

## Задание №8 для самостоятельной работы с дидактическим материалом по теме«Самоиндукция. Энергия магнитного поля»

- 1. Выпишите из учебника понятие самоиндукции, формулы для расчета ЭДС самоиндукции, энергии магнитного поля. Подпишите величины, входящие в формулы.
- 2. Выполните задание по вариантам:

#### ВАРИАНТ №1

1. Составьте по данным задачи и решите их:

| №1                            | №2                       |
|-------------------------------|--------------------------|
| Дано:                         | Дано:                    |
| $\Delta I=2A$                 | L=0,6 Гн                 |
| $\Delta t=0,2$ c              | I=20 A                   |
| $\varepsilon_{\rm is}$ =20 MB | Найти: W <sub>м</sub> =? |
| Найти: L=?                    |                          |

2. При изменении силы тока в электромагните с 6 до 4 А за 0,01 с энергия магнитного поля изменилась на 1 Дж. Найти все, что можно по данным задачи.

#### ВАРИАНТ №2

1. Составьте по данным задачи и решите их:

| Nº1                       | <b>№</b> 2           |
|---------------------------|----------------------|
| Дано:                     | Дано:                |
| L=                        | L=0,5Гн              |
| $\Delta I=5A$             | W <sub>м</sub> =1 Дж |
| $\Delta t=0.02 c$         | Найти: I=?           |
| Найти: ε <sub>is</sub> =? |                      |

2. При изменении силы тока в 2 раза в катушке, индуктивность которой 0,5 Гн, за 0,1сэнергия магнитного поля изменилась на 3 Дж. Найти все, что можно по данным задачи.

### Задание №9 для самостоятельной работы с дидактическим материалом по теме«Интерференция света в науке и технике»

Составьте конспект по следующему плану:

- 1. Проявление интерференции света в природе.
- 2. Применение интерференции света в науке и технике

### Задание №10 для самостоятельной работы с учебником по теме«Шкала электромагнитных волн»

- 1. Прочитайте материал по теме, используя учебники
- 2. Подготовьте в тетради таблицу (на двойном развернутом листе):

| Вид<br>электромагнитного | Диапа           | 130Н          | Источники<br>излучения | Свойства | Применение |
|--------------------------|-----------------|---------------|------------------------|----------|------------|
| излучения                | длин<br>волн, м | частот,<br>Гц |                        |          |            |
| радиоизлучение           |                 |               |                        |          |            |
| Инфракрасное             |                 |               |                        |          |            |
| Видимое                  |                 |               |                        |          |            |
| ультрафиолетовое         |                 |               |                        |          |            |
| рентгеновское            |                 |               |                        |          |            |
| гамма-излучение          |                 |               |                        |          |            |

- 3. Заполните таблицу:
- диапазон длин волн укажите в соответствии с данными плаката «Шкала электромагнитных излучений» и учебников;
- диапазон частот рассчитайте по формуле:

$$v = \frac{c}{\lambda}$$

- источники, свойства и применение электромагнитных излучений выпишите из учебника.

## Задание №11 для самостоятельной работы с дидактическим материалом по теме«Биологическое действие радиоактивных излучений»

- 1. Прочитайте материал по теме
- 2. Выпишите в тетрадь: какое биологическое действие оказывают радиоактивные излучения на живые организмы, чем отличается это влияние взависимости от вида излучений.

## Задание №12 для самостоятельной работы с дидактическим материалом по теме«Способы наблюдения и регистрации заряженных частиц»

- 1. Составьте конспект по плану:
  - устройство и принцип действия камеры Вильсона
  - устройство и принцип действия счетчика Гейгера
- 2. Подготовьте устный ответ о данных устройствах

## Задание №13 для самостоятельной работы с дидактическим материалом по теме«Устройство АЭС. Ядерный реактор»

- 1. Нарисуйте схему атомной электростанции, подпишите ее элементы.
- 2. Выделите на схеме основные части ядерного реактора.
- 3. Подготовьте устный ответ по теме «Принцип работы АЭС»

### КОМПЛЕКТ ЗАДАНИЙ ДЛЯ КОНТРОЛЬНЫХ РАБОТ

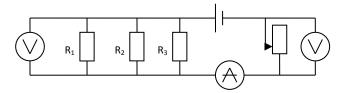
### Тема «Механика. Основы молекулярной физики и термодинамики» Вариант №1.

- 1. Шарик начинает двигаться с желоба с ускорением 3  $\text{м/c}^2$ . Какое расстояние он пройдет за 2 с?
- 2. Мальчик тянет санки массой 6 кг с ускорением 3 м/ $c^2$ . Чему равна сила тяги, если коэффициент трения 0,3?
- 3. Газ при давлении 8 10<sup>5</sup> Па и температуре 12°C занимает объем 855 л. Каково будет давление, если газ данной массы при температуре 47°C займет объем 800л?
- 4. При изобарном расширении газа на 0,5 м<sup>3</sup>ему было передано 0,26 МДж теплоты. Рассчитать изменение внутренней энергии газа, если давление газа равно 200 кПа.

#### Вариант №2.

- 1. Вагонетка движется из состояния покоя с ускорением  $0.25 \text{ м/c}^2$ . Какую скорость будет иметь вагонетка через 10 сот начала движения?
- 2. В баллоне емкостью 26 л находится 1,1 кг азота при давлении  $35\cdot 10^5$  Па. Определить температуру газа.
- 3. Платформа массой 10 т движется по горизонтальному участку железнодорожного пути со скоростью 1,5 м/с. Ее нагоняет платформа массой 12 т, движущаяся со скоростью 3 м/с. При столкновении платформы сцепляются и движутся вместе. С какой скоростью они перемещаются? Трением пренебречь.
- 4. Один моль идеального газа изобарно нагрели на 72 K, сообщив при этом 1,6 кДж теплоты. Найти совершенную газом работу и приращение его внутренней энергии.

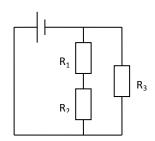
#### Вариант №3.


- 1. Какое расстояние пройдет автомобиль за 10 с, двигаясь из состояния покоя с ускорением  $0.6~{\rm m/c}^2$ ?
- 2. Имеется 12 л углекислого газа под давлением  $9 \cdot 10^5$  Па и температуре 288°С. Найти массу газа
- 3. С лодки массой 200 кг, движущейся со скоростью 1 м/с, прыгает мальчик массой 50 кг в горизонтальном направлении со скоростью 7 м/с. Какова скорость лодки после прыжка мальчика, если он прыгает с носа?
- 4. В цилиндре под поршнем находится 1,25 кг воздуха. Для его нагревания на 4°С при постоянном давлении было затрачено 5 кДж теплоты. Определить изменение внутренней энергии воздуха (М=0,029 кг/моль).

#### Вариант №4.

- 1. Какую скорость разовьет мотоцикл, пройдя из состояния покоя путь 100 м c ускорением  $2 \text{ м/c}^2$ ?
- 2. Электровоз при трогании с места развивает силу тяги 650 кН. Какое ускорение он сообщит составу массой 3250 т, если коэффициент трения равен 0,005?
- 3. Какое давление производят пары ртути массой 12 мг в баллоне ртутной лампы объемом  $3\cdot 10^{-5}$  м<sup>3</sup> при 300 К?
- 4. Один моль идеального газа, находящегося при температуре 300K, изохорно охлаждается так, что его давление падает в три раза. Определить количество отданной газом теплоты.

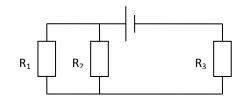
## Тема «Электродинамика» Вариант №1..


1. Определить показания всех приборов, если движок реостата находится на середине. ЭДС источника 9,5 В, внутреннее сопротивление 1,5 Ом,  $R_1$ =40 Ом,  $R_2$ =60 Ом,  $R_3$ =120 Ом. Сопротивление реостата 52 Ом.



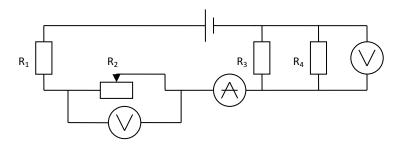
- 2. Площадка  $15 \text{ см}^2$ , расположенная перпендикулярно силовым линиям однородного магнитного поля, пронизывается магнитным потоком  $6 \cdot 10^{-6} \text{B} \text{б}$ . В поле влетает протон со скоростью  $2,5 \cdot 10^5$  м/с под углом  $30^\circ$  к силовым линиям. Найти силу, действующую на протон.
- 3. Какой величины ЭДС самоиндукции возбуждается в обмотке электромагнита с индуктивностью 0,4 Гн при равномерном изменении силы тока в ней на 5 а за 0,02 с?

#### Вариант №2.


- 1. Определить силу тока в проводнике  $R_1$  и напряжение на концах проводника  $R_3$ , если ЭДС источника 14 B, его внутреннее сопротивление 1 Ом.  $R_1$ =10 Ом,  $R_2$ =5 Ом,  $R_3$ =10 Ом (см. рис.).
- 2. Протон, имеющий скорость 4,6·10<sup>5</sup> м\с, влетает в однородное магнитное поле с индукцией 0,3 Тл, перпендикулярно магнитным силовым линиям. Рассчитать радиус окружности, по которой будет двигаться протон.



3. За 0,005 секунд в соленоиде, содержащем 500 витков провода, магнитный поток равномерно уменьшается с  $7\cdot10^{-3}$ Вб до  $3\cdot10^{-3}$ Вб. Найти величину ЭДС индукции в соленоиде.


#### Вариант №3.

- 1. В однородное магнитное поле, индукция которого 0,4 Тл, помещен прямой проводник длиной 1,2 м. Определите силу, действующую на проводник. Если на его концах напряжение 60мВ, а сопротивление 1,2·10<sup>-2</sup> Ом. Угол между направлением тока и вектором индукции 60°.
- 2. Определить индуктивность катушки, если при ослаблении в ней тока на 2,8 А за 62мс в катушке появляется средняя ЭДС самоиндукции 14 В.
- 3. Определить силу тока в проводнике  $R_2$  и напряжение на концах проводника  $R_2$ , если ЭДС источника равно 9 B, а его внутреннее сопротивление 1,8 Ом.  $R_1$ =3 Ом,  $R_2$ =2Ом,  $R_3$ =1 Ом.



#### Вариант №4.

- 1. С какой силой действует однородное магнитное поле с индукцией 0,15 Тл на проводник длиной 0,2 м, если его сопротивление 0,01 Ом, электрическая мощность 4 Вт? Вектор индукции поля перпендикулярен проводнику.
- 2. В катушке, состоящей из 75 витков, магнитный поток равен 4,8 10<sup>-3</sup>Вб. За какое время должен исчезнуть этот поток, чтобы в катушке возникла средняя ЭДС индукции 0,74 В?
- 3. Определить показания всех приборов, если движок реостата находится в крайнем правом положении.  $\varepsilon$ =12,4 B, r=0,2 Oм, R<sub>1</sub>=2,9 Ом, R<sub>2</sub>=1,6 Ом, R<sub>3</sub>=6 Ом, R<sub>4</sub>=2 Ом.



## Тема «Оптика. Строение атома и квантовая физика» Вариант №1.

- 1. Под каким углом следует направить луч на поверхность стекла, показатель преломления которого 1,54, чтобы угол преломления получился равным 30°?
- 2. Дифракционная решетка, имеющая 100 штрихов на 1 мм, помещена на расстоянии 2 м от экрана и освещается пучком белого света, падающим перпендикулярно на решетку. Определить ширину дифракционного спектра первого порядка, полученного на экране, если  $\lambda_{\rm b}$ =400 нм, а  $\lambda_{\rm k}$ =760 нм.
- 3. Сколько нуклонов, протонов и нейтронов содержится в ядре урана  $^{235}_{92}U$ ?
- 4. Определите дефект массы, энергию связи и удельную энергию ядра азота  ${}^{14}_{7}N$ .

#### Вариант №2.

- 1. Луч света переходит из стекла в воду. Угол падения 45°. Чему равен угол преломления стекла? Показатель преломления стекла 1,6, а воды -1,3.
- 2. При помощи дифракционной решетки с периодом 0.02 мм получено первое дифракционное изображение на расстоянии 3,6 см от центрального максимума и на расстоянии 1,8 м от решетки. Каков цвет источника света, освещающего решетку?
- 3. Сколько нуклонов, протонов и нейтронов содержится в ядре магния  $^{24}_{12}Mg$ ?
- 4. Рассчитайте дефект массы, энергию связи и удельную энергию связи ядра углерода  ${}^{12}_{6}C$ .

#### Вариант №3.

- 1. Луч света переходит из глицерина в воздух. Каков угол преломления луча, если он падает под углом 22°? Показатель преломления глицерина 1,47.
- 2. Для определения периода дифракционной решетки на нее направлен световой пучок красного света с длиной волны 0,76 мкм. Каков период дифракционной решетки, если на экране, отстоящем от нее на 1 м, расстояние между спектрами первого порядка равно 15,2 см?
- 3. Сколько нуклонов, протонов и нейтронов содержится в ядре натрия  $^{23}_{11}Na$ ?

4. Найдите дефект массы, энергию связи и удельную энергию связи ядра кислорода  $^{16}_{8}O$  .

#### Вариант №4.

- 1. Луч света переходит из воды в стекло с показателем преломления 1,7. Определить угол падения луча, если угол преломления равен 28°. Показатель преломления воды равен 1,33.
- 2. Ширина спектра первого порядка (длины волн заключены в пределах от 0.38 до 0,76 мкм), полученного на экране с помощью дифракционной решетки равна 11 см. Период решетки 0,01 мм. Определить расстояние от решетки до экрана.
- 3. Сколько нуклонов, протонов и нейтронов содержится в ядре азота  ${}^{14}_{7}N$ ?
- 4. Рассчитайте дефект массы, энергию связи и удельную энергию связи ядра алюминия  $^{27}_{13}Al$  .

### 3.4. Перечень практических (лабораторных) работ

| Разделы (темы) дисциплины     | Темы практических работ                             |
|-------------------------------|-----------------------------------------------------|
| 1                             | 2                                                   |
| Раздел 1. МЕХАНИКА            |                                                     |
| Тема 1.1. Кинематика          | Практическая работа №1.Скорость. Путь. Ускорение.   |
|                               | Равномерное и равноускоренное движения              |
|                               | Лабораторная работа №1. Определение ускорения тела  |
|                               | при равноускоренном движении                        |
| Тема 1.2. Законы механики     | Практическая работа №2.                             |
| Ньютона                       | Основной закон классической динамики                |
|                               | Лабораторная работа №2.                             |
|                               | Изучение движения тела по окружности                |
| Тема 1.3. Законы сохранения в | Практическая работа №3                              |
| механике                      | Применение законов сохранения в механике.           |
| Тема 1.4.Механические         | Лабораторная работа№3. Измерение массы тела с       |
| колебания и волны             | помощью весов и пружинного маятника                 |
| Раздел 2.                     |                                                     |
| ОСНОВЫ                        |                                                     |
| молекулярной физики           |                                                     |
| И ТЕРМОДИНАМИКИ               |                                                     |
| Тема 2.1. Основы              | Практическая работа №4                              |
| молекулярно-кинетической      | Основное уравнение молекулярно-кинетической теории  |
| теории. Идеальный газ         | газов                                               |
|                               | Практическая работа №5                              |
|                               | Газовые законы. Уравнение состояния идеального газа |
|                               | Лабораторная работа №4                              |
|                               | Исследование изотермического процесса               |
| Тема 2.2. Основы              | Практическая работа №6                              |
| термодинамики                 | Применение первого начала термодинамики к           |
|                               | изопроцессам                                        |
| Тема 2.3. Свойства паров      | Лабораторная работа №5                              |
|                               | Измерение влажности воздуха                         |
|                               |                                                     |

| 1                            | 2                                                                 |
|------------------------------|-------------------------------------------------------------------|
| Тема 2.4.Свойства жидкостей  | Лабораторная работа №6                                            |
|                              | Измерение поверхностного натяжения жидкости                       |
| Раздел 3.                    |                                                                   |
| ЭЛЕКТРОДИНАМИКА              |                                                                   |
| Тема 3.1. Электрическое поле | Практическая работа №7                                            |
|                              | Силовая характеристика электрического поля                        |
|                              | Практическая работа №8                                            |
|                              | Энергетическая характеристика электрического поля.                |
|                              | Практическая работа №9. Дифференцированный зачет                  |
|                              | по темам «Механика. Основы молекулярной физики и                  |
| T 222                        | термодинамики. Электростатика»                                    |
| Тема 3.2. Законы постоянного | Лабораторная работа №7                                            |
| тока                         | Определение удельного сопротивления проводника                    |
|                              | Лабораторная работа №8 Изучение последовательного и параллельного |
|                              | соединений проводников                                            |
|                              | Трактическая работа №10                                           |
|                              | Расчет электрических цепей                                        |
|                              | Лабораторная работа №9                                            |
|                              | Измерение ЭДС и внутреннего сопротивления                         |
|                              | источника тока                                                    |
| Тема 3.4. Магнитное поле     | Практическая работа №11                                           |
|                              | Действие магнитного поля на проводник с током и                   |
|                              | движущуюся заряженную частицу                                     |
| Тема 3.5. Электромагнитная   | Лабораторная работа №10                                           |
| индукция                     | Изучение явления электромагнитной индукции                        |
| Раздел 4. ОПТИКА             |                                                                   |
| Тема 4.1. Природа света      | Лабораторная работа №11                                           |
|                              | Определение показателя преломления стекла                         |
| Тема 4.2. Волновые свойства  | Практическая работа №12                                           |
| света                        | Дифракционная решетка                                             |
|                              | Лабораторная работа №12                                           |
|                              | Определение длины световой волны с помощью                        |
| D. F. D. HED STATES A        | дифракционной решетки                                             |
| Раздел 5. ЭЛЕМЕНТЫ           |                                                                   |
| КВАНТОВОЙ ФИЗИКИ             | П 7 1010                                                          |
| Тема 5.1. Квантовая оптика   | Практическая работа №13                                           |
|                              | Квантовая оптика                                                  |

### 1.5. Перечень тем и формызаданий самостоятельной работы

| №   | Тема                                        | Форма    | Количество |
|-----|---------------------------------------------|----------|------------|
| п/п | программы                                   | задания  | часов      |
| 1   | 2                                           | 3        | 4          |
| 1.  | Силы в механике                             | конспект | 2          |
| 2.  | Равномерное движение по окружности          | конспект | 2          |
| 3.  | Звуковые волны. Ультразвук и его применение | конспект | 2          |
| 4.  | Характеристика твердого состояния вещества. | конспект | 4          |
|     | Изменение агрегатных состояний вещества.    |          |            |
|     | Плавление и кристаллизация                  |          |            |

| 5.  | Проводники и диэлектрики в электрическом    | таблица  | 2 |
|-----|---------------------------------------------|----------|---|
|     | поле                                        |          |   |
| 6.  | Проблемы электроснабжения                   | реферат  | 4 |
| 7   | Техника безопасности в обращении с          | реферат  | 4 |
|     | электрическим током                         |          |   |
| 8.  | Магнитные свойства вещества                 | таблица  | 2 |
| 9.  | Емкостное и индуктивное сопротивления       | конспект | 4 |
|     | переменного тока. Закон Ома для             |          |   |
|     | электрической цепи переменного тока. Работа |          |   |
|     | и мощность переменного тока                 |          |   |
| 10. | Изобретение радио А.С. Поповым. Понятие о   | реферат  | 4 |
|     | радиосвязи                                  |          |   |
| 11. | Линзы. Глаз как оптическая система.         | реферат  | 4 |
|     | Оптические приборы                          |          |   |
| 12. | Поляризация света. Поляроиды                | конспект | 2 |
| 13  | Квантовые генераторы                        | конспект | 2 |

### ТЕМАТИКА ИНДИВИДУАЛЬНЫХ ТВОРЧЕСКИХ ЗАДАНИЙ/ПРОЕКТОВ

- 1. Физические приборы и их применение
- 2. Альтернативная энергетика
- 3. Атомная физика. Изотопы. Применение радиоактивных изотопов
- 4. Бесконтактные методы контроля температуры
- 5. Биполярные транзисторы
- 6. Виды электрических разрядов. Электрические разряды на службе человека
- 7. Влияние дефектов на физические свойства кристаллов
- 8. Голография и ее применение
- 9. Движение тела переменной массы
- 10. Дифракция в нашей жизни
- 11. Жидкие кристаллы
- 12. Использование электроэнергии в транспорте
- 13. Конструкционная прочность материала и ее связь со структурой
- 14. Нанотехнология междисциплинарная область фундаментальной и прикладной науки и техники
- 15. Нуклеосинтез во Вселенной
- 16. Оптические явления в природе
- 17. Открытие и применение высокотемпературной сверхпроводимости.
- 18. Экологические проблемы и возможные пути их решения.

### 1.6. Материалы промежуточной аттестации

#### ВОПРОСЫ ДЛЯ ДИФФЕРЕНЦИРОВАННОГОЗАЧЕТА

#### Раздел «МЕХАНИКА»

- 1. Механическое движение.
- 2. Законы Ньютона.
- 3. Импульс тела. Закон сохранения импульса.
- 4. Работа, мощность, энергия.
- 5. Виды механической энергии. Закон сохранения механической энергии.
- 6. Механические колебания.
- 7. Механические волны.

#### Раздел «ОСНОВЫ МОЛЕКУЛЯРНОЙ ФИЗИКИ И ТЕРМОДИНАМИКИ»

- 1. Основные положения молекулярно-кинетической теории, их опытное обоснование/
- 2. Основные характеристики молекул.
- 3. Идеальный газ. Основное уравнение молекулярно-кинетической теории идеального газа.
- 4. Температура, ее измерение.
- 5. Уравнение Менделеева Клапейрона.
- 6. Изопроцессы: понятие, законы, графическое изображение.
- 7. Первое начало термодинамики. Понятие о втором начале термодинамики.
- 8. Тепловой двигатель. КПД теплового двигателя.
- 9. Роль тепловых двигателей. Охрана природы.
- 10. Влажность воздуха. Приборы, измеряющие влажность.
- 11. Поверхностное натяжение. Смачивание. Капиллярные явления.

#### Раздел «ЭЛЕКТРОСТАТИКА»

- 1. Электрический заряд. Виды зарядов. Закон сохранения заряда.
- 2. Закон Кулона.
- 3. Электрическое поле: понятие, свойства, характеристики, графическое изображение.
- 4. Электроёмкость. Конденсаторы.

#### вопросы к экзамену

- 1. Механическое движение.
- 2. Законы Ньютона.
- 3. Импульс тела. Закон сохранения импульса.
- 4. Работа, мощность, энергия.
- 5. Виды механической энергии. Закон сохранения механической энергии.
- 6. Механические колебания.
- 7. Механические волны.
- 8. Основные положения молекулярно-кинетической теории, их опытное обоснование/
- 9. Основные характеристики молекул.
- 10. Идеальный газ. Основное уравнение молекулярно-кинетической теории идеального газа.
- 11. Температура, ее измерение.
- 12. Уравнение Менделеева Клапейрона.
- 13. Изопроцессы: понятие, законы, графическое изображение.
- 14. Первое начало термодинамики. Понятие о втором начале термодинамики.
- 15. Тепловой двигатель. КПД теплового двигателя.
- 16. Роль тепловых двигателей. Охрана природы.
- 17. Влажность воздуха. Приборы, измеряющие влажность.
- 18. Поверхностное натяжение.

- 19. Смачивание. Капиллярные явления.
- 20. Электрический заряд. Виды зарядов. Закон сохранения заряда. Закон Кулона.
- 21. Электрическое поле: понятие, свойства, характеристики, графическое изображение.
- 22. Электроёмкость. Конденсаторы.
- 23. Постоянный ток. Законы постоянного тока.
- 24. Электрический ток в газах.
- 25. Электрический ток в полупроводниках.
- 26. Полупроводниковые приборы.
- 27. Магнитное поле: понятие, свойства, характеристика, графическое изображение.
- 28. Сила Ампера. Закон Ампера.
- 29. Сила Лоренца. Движение частиц в магнитном поле.
- 30. Электромагнитная индукция. Опыты Фарадея. Правило Ленца.
- 31. Свободные электромагнитные колебания в контуре. Формула Томсона.
- 32. Вынужденные электрические колебания. Переменный ток. Индукционный генератор.
- 33. Трансформатор. Передача и распределение электроэнергии.
- 34. Электромагнитное поле и его распространение в виде электромагнитных волн.
- 35. Шкала электромагнитных волн.
- 36. Принцип Гюйгенса. Законы отражения и преломления света.
- 37. Интерференция света.
- 38. Применение интерференции света в технике и проявление в природе.
- 39. Дифракция света. Дифракционная решетка.
- 40. Дисперсия света. Разложение белого света призмой. Радуга.
- 41. Спектральный анализ. Цвета тел.
- 42. Тепловое излучение. Квантовая гипотеза Планка.
- 43. Фотоны. Энергия и импульс фотона.
- 44. Внешний и внутренний фотоэффекты.
- 45. Модель атома Резерфорда Бора.
- 46. Радиоактивность. Радиоактивные излучения и их воздействие на живые организмы.
- 47. Состав атомных ядер. Ядерные силы. Дефект массы. Энергия связи.
- 48. Элементарные частицы.
- 49. Деление тяжелых атомных ядер. Ядерный реактор.
- 50. Термоядерный синтез и условия его осуществления.

| Преподаватель _ |  | /Г.В. Пантина/ |
|-----------------|--|----------------|
|-----------------|--|----------------|

#### Дисциплина/МДК: ПД.03. Физика

#### Специальность (код, наименование):

- 21.02.04. Землеустройство
- 21.02.05. Земельно-имущественные отношения
- 08.02.01. Строительство и эксплуатация зданий и сооружений
- 08.02.05. Строительство и эксплуатация автомобильных дорог и аэродромов
- 09.02.04. Информационные системы (по отраслям)
- 35.02.03. Технология деревообработки

### ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 1

- 1. Механическое движение.
- 2. Магнитное поле: понятие, свойства, характеристика, графическое изображение.
- 3. Батарея элементов с ЭДС 21 В и внутренним сопротивлением 0,5 Ом подключена к внешней цепи, состоящей из трех параллельно соединенных проводников сопротивлениями 2, 6 и 12 Ом. Определите общую силу тока в цепи.

| Преподаватель | /Γ.B. | Пантина/ |
|---------------|-------|----------|
|               |       |          |

#### Дисциплина/МДК: ПД.03. Физика

#### Специальность (код, наименование):

- 21.02.04. Землеустройство
- 21.02.05. Земельно-имущественные отношения
- 08.02.01. Строительство и эксплуатация зданий и сооружений
- 08.02.05. Строительство и эксплуатация автомобильных дорог и аэродромов
- 09.02.04. Информационные системы (по отраслям)
- 35.02.03. Технология деревообработки

### ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 2

- 1. Законы Ньютона.
- 2. Электромагнитная индукция. Опыты Фарадея. Правило Ленца.
- 3. При изобарном расширении 0.02 кг кислорода его температура изменяется на 3°C. Величина работы, совершенная во время этого процесса равна  $100~\rm Дж$ . Какое количество теплоты было передано газу и чему равно изменение его внутренней энергии ( $c_p$ =916  $\rm Дж/кгK$ )?

| Преподаватель | /Γ.B. | Пантина/ |
|---------------|-------|----------|
|---------------|-------|----------|

## Дисциплина/МДК: ПД.03. Физика Специальность (код, наименование): 21.02.04. Землеустройство 21.02.05. Земельно-имущественные отношения 08.02.01. Строительство и эксплуатация зданий и сооружений 08.02.05. Строительство и эксплуатация автомобильных дорог и аэродромов 09.02.04. Информационные системы (по отраслям) 35.02.03. Технология деревообработки ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 3 1. . Импульс тела. Закон сохранения импульса. 2. Применение интерференции света в технике и проявление в природе. 3. Опытным путем определить показатель преломления стекла. Преподаватель \_\_\_\_\_\_/Г.В. Пантина/ Дисциплина/МДК: ПД.03. Физика Специальность (код, наименование): 21.02.04. Землеустройство 21.02.05. Земельно-имущественные отношения 08.02.01. Строительство и эксплуатация зданий и сооружений 08.02.05. Строительство и эксплуатация автомобильных дорог и аэродромов 09.02.04. Информационные системы (по отраслям) 35.02.03. Технология деревообработки ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 4 1. . Работа. Мощность. Энергия. 2. Температура, ее измерение 3. Два маленьких наэлектризованных шарика, находясь в воздухе на расстоянии 20 см, взаимодействуют с силой 3·10<sup>-5</sup> Н. Заряд одного шарика 18 нКл. Как велик заряд другого шарика? Преподаватель /Г.В. Пантина/

#### Дисциплина/МДК: ПД.03. Физика

#### Специальность (код, наименование):

- 21.02.04. Землеустройство
- 21.02.05. Земельно-имущественные отношения
- 08.02.01. Строительство и эксплуатация зданий и сооружений
- 08.02.05. Строительство и эксплуатация автомобильных дорог и аэродромов
- 09.02.04. Информационные системы (по отраслям)
- 35.02.03. Технология деревообработки

### ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 5

- 1 Основные характеристики молекул
- 2. Шкала электромагнитных волн.
- 3. Какова индукция магнитного поля, в котором на проводник с длиной активной части 5 см действует сила 50 мН? Сила тока в проводнике 25 А. Проводник расположен перпендикулярно индукции магнитного поля.

| Преподаватель | $/\Gamma$  | .В. | Пантина/    |
|---------------|------------|-----|-------------|
| прешедаватель | , <u>-</u> |     | 11011111100 |

#### Дисциплина/МДК: ПД.03. Физика

#### Специальность (код, наименование):

- 21.02.04. Землеустройство
- 21.02.05. Земельно-имущественные отношения
- 08.02.01. Строительство и эксплуатация зданий и сооружений
- 08.02.05. Строительство и эксплуатация автомобильных дорог и аэродромов
- 09.02.04. Информационные системы (по отраслям)
- 35.02.03. Технология деревообработки

### ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 6

- 1. Смачивание. Капиллярные явления.
- 2. Свободные электромагнитные колебания в контуре. Формула Томсона.
- 3. Электрон описывает в магнитном поле окружность радиусом 4 мм. Скорость электрона 3,6 Мм/с. Найти индукцию магнитного поля.

| Преподаватель | /Г.В. Пантина/ |
|---------------|----------------|
|               |                |

### Дисциплина/МДК: ПД.03. Физика Специальность (код, наименование): 21.02.04. Землеустройство 21.02.05. Земельно-имущественные отношения 08.02.01. Строительство и эксплуатация зданий и сооружений 08.02.05. Строительство и эксплуатация автомобильных дорог и аэродромов 09.02.04. Информационные системы (по отраслям) 35.02.03. Технология деревообработки ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 7 1. Основные положения молекулярно-кинетической теории, их опытное обоснование. 2. Полупроводниковые приборы. 3. Определите длину световой волны, падающей на дифракционную решетку, если спектр первого порядка находится под углом 5°. Период дифракционной решетки равен 5 мкм. Преподаватель /Г.В. Пантина/ Дисциплина/МДК: ПД.03. Физика Специальность (код, наименование): 21.02.04. Землеустройство 21.02.05. Земельно-имущественные отношения 08.02.01. Строительство и эксплуатация зданий и сооружений 08.02.05. Строительство и эксплуатация автомобильных дорог и аэродромов 09.02.04. Информационные системы (по отраслям) 35.02.03. Технология деревообработки ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 8 1. Идеальный газ. Основное уравнение молекулярно-кинетической теории идеального газа. 2. Вынужденные электрические колебания. Переменный ток. Индукционный генератор. 3. Чему равна длина волны, распространяющейся со скоростью 5 м/с, в которой за 10 с успевают произойти 4 колебания?

### Дисциплина/МДК: ПД.03. Физика Специальность (код, наименование): 21.02.04. Землеустройство 21.02.05. Земельно-имущественные отношения 08.02.01. Строительство и эксплуатация зданий и сооружений 08.02.05. Строительство и эксплуатация автомобильных дорог и аэродромов 09.02.04. Информационные системы (по отраслям) 35.02.03. Технология деревообработки ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 9 1. Тепловой двигатель. Принцип работы, КПД теплового двигателя. 2. Электромагнитное поле и его распространение в виде электромагнитных волн. 3. Скорость спуска парашютиста после раскрытия парашюта уменьшилась от 60 до 5 м/с за 1,1 с. Найти ускорение парашютиста. Преподаватель /Г.В. Пантина/ Дисциплина/МДК: ПД.03. Физика Специальность (код, наименование): 21.02.04. Землеустройство 21.02.05. Земельно-имущественные отношения 08.02.01. Строительство и эксплуатация зданий и сооружений 08.02.05. Строительство и эксплуатация автомобильных дорог и аэродромов 09.02.04. Информационные системы (по отраслям) 35.02.03. Технология деревообработки ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 10 1. Влажность воздуха. Приборы, измеряющие влажность. 2. Радиоактивность. Радиоактивные излучения и их воздействия на живые организмы. 3. Опытным путем определить удельное сопротивление проводника.

Преподаватель /Г.В. Пантина/

## Дисциплина/МДК: ПД.03. Физика Специальность (код, наименование): 21.02.04. Землеустройство 21.02.05. Земельно-имущественные отношения 08.02.01. Строительство и эксплуатация зданий и сооружений 08.02.05. Строительство и эксплуатация автомобильных дорог и аэродромов 09.02.04. Информационные системы (по отраслям) 35.02.03. Технология деревообработки ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 11 1. Уравнение Менделеева - Клапейрона. 2. Трансформатор. Передача и распределение электроэнергии. 3. Каков импульс фотона ультрафиолетового излучения с длиной волны 100 нм? Преподаватель \_\_\_\_\_ /Г.В. Пантина/ Дисциплина/МДК: ПД.03. Физика Специальность (код, наименование): 21.02.04. Землеустройство 21.02.05. Земельно-имущественные отношения 08.02.01. Строительство и эксплуатация зданий и сооружений 08.02.05. Строительство и эксплуатация автомобильных дорог и аэродромов 09.02.04. Информационные системы (по отраслям) 35.02.03. Технология деревообработки ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 12 1. Первое начало термодинамики. Понятие о втором начале термодинамики. 2. Модель атома Резерфорда – Бора. 3. Заряд конденсатора 400 мкКл, напряжение на его обкладках 500 В. Определите энергию конденсатора. Преподаватель \_\_\_\_\_\_\_/Г.В. Пантина/

## Дисциплина/МДК: ПД.03. Физика Специальность (код, наименование): 21.02.04. Землеустройство 21.02.05. Земельно-имущественные отношения 08.02.01. Строительство и эксплуатация зданий и сооружений 08.02.05. Строительство и эксплуатация автомобильных дорог и аэродромов 09.02.04. Информационные системы (по отраслям) 35.02.03. Технология деревообработки ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 13 1. Поверхностное натяжение. 2. Электрический ток в полупроводниках. 3. К источнику с ЭДС 12 В и внутренним сопротивлением 1 Ом подключен реостат, сопротивление которого 5 Ом. Найти силу тока в цепи и напряжение на зажимах источника. Дисциплина/МДК: ПД.03. Физика Специальность (код, наименование): 21.02.04. Землеустройство 21.02.05. Земельно-имущественные отношения 08.02.01. Строительство и эксплуатация зданий и сооружений 08.02.05. Строительство и эксплуатация автомобильных дорог и аэродромов 09.02.04. Информационные системы (по отраслям) 35.02.03. Технология деревообработки ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 14 1. Механические колебания. 2. Принцип Гюйгенса. Законы отражения и преломления света. 3. Опытным путем определить ЭДС и внутреннее сопротивление источника тока. Преподаватель \_\_\_\_\_\_/Г.В. Пантина/

## Дисциплина/МДК: ПД.03. Физика Специальность (код, наименование): 21.02.04. Землеустройство 21.02.05. Земельно-имущественные отношения 08.02.01. Строительство и эксплуатация зданий и сооружений 08.02.05. Строительство и эксплуатация автомобильных дорог и аэродромов 09.02.04. Информационные системы (по отраслям) 35.02.03. Технология деревообработки ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 15 1. Элементарные частицы 2. Интерференция света. 3. Определить красную границу фотоэффекта для калия, если работа выхода электронов равна 3,2·10<sup>-19</sup> Дж. Преподаватель \_\_\_\_\_\_ /Г.В. Пантина/ Дисциплина/МДК: ПД.03. Физика Специальность (код. наименование): 21.02.04. Землеустройство 21.02.05. Земельно-имущественные отношения 08.02.01. Строительство и эксплуатация зданий и сооружений 08.02.05. Строительство и эксплуатация автомобильных дорог и аэродромов 09.02.04. Информационные системы (по отраслям) 35.02.03. Технология деревообработки ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 16 1. Механические волны. 2. Сила Лоренца. Движение частиц в магнитном поле. 3.Опытным путем определить длину волны красного цвета. Преподаватель \_\_\_\_\_\_/Г.В. Пантина/

## Дисциплина/МДК: ПД.03. Физика Специальность (код, наименование): 21.02.04. Землеустройство 21.02.05. Земельно-имущественные отношения 08.02.01. Строительство и эксплуатация зданий и сооружений 08.02.05. Строительство и эксплуатация автомобильных дорог и аэродромов 09.02.04. Информационные системы (по отраслям) 35.02.03. Технология деревообработки ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 17 1. Роль тепловых двигателей. Охрана природы. 2. Дифракция света. Дифракционная решетка. 3. Велосипедист, движущийся со скоростью 3 м/с, начинает спускаться с горы с ускорением 0.8м/с<sup>2</sup>. Найти длину горы, если спуск занял 6 с. Преподаватель \_\_\_\_\_\_\_/Г.В. Пантина/ Дисциплина/МДК: ПД.03. Физика Специальность (код. наименование): 21.02.04. Землеустройство 21.02.05. Земельно-имущественные отношения 08.02.01. Строительство и эксплуатация зданий и сооружений 08.02.05. Строительство и эксплуатация автомобильных дорог и аэродромов 09.02.04. Информационные системы (по отраслям) 35.02.03. Технология деревообработки ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 18 1. Электрический заряд. Виды зарядов. Закон сохранения заряда. Закон Кулона. 2. Дисперсия света. Разложение белого света призмой. Радуга. 3. Определите дефект масс ядра изотопа кислорода ${}^{17}_{8}O$ . Преподаватель \_\_\_\_\_\_/Г.В. Пантина/

## Дисциплина/МДК: ПД.03. Физика Специальность (код, наименование): 21.02.04. Землеустройство 21.02.05. Земельно-имущественные отношения 08.02.01. Строительство и эксплуатация зданий и сооружений 08.02.05. Строительство и эксплуатация автомобильных дорог и аэродромов 09.02.04. Информационные системы (по отраслям) 35.02.03. Технология деревообработки ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 19 1. Электрическое поле: понятие, свойства, характеристики, графическое изображение. 2. Спектральный анализ. Цвета тел. 3. Опытным путем определить относительную влажность воздуха. Преподаватель \_\_\_\_\_\_ /Г.В. Пантина/ Дисциплина/МДК: ПД.03. Физика Специальность (код, наименование): 21.02.04. Землеустройство 21.02.05. Земельно-имущественные отношения 08.02.01. Строительство и эксплуатация зданий и сооружений 08.02.05. Строительство и эксплуатация автомобильных дорог и аэродромов 09.02.04. Информационные системы (по отраслям) 35.02.03. Технология деревообработки ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 20 1. Виды механической энергии. Закон сохранения механической энергии. 2. Тепловое излучение. Квантовая гипотеза Планка. 3. Луч света переходит из стекла в воду. Угол падения 45°. Чему равен угол преломления стекла? Показатель преломления стекла 1.6, а воды - 1.3. Преподаватель \_\_\_\_\_\_/Г.В. Пантина/

## Дисциплина/МДК: ПД.03. Физика Специальность (код, наименование): 21.02.04. Землеустройство 21.02.05. Земельно-имущественные отношения 08.02.01. Строительство и эксплуатация зданий и сооружений 08.02.05. Строительство и эксплуатация автомобильных дорог и аэродромов 09.02.04. Информационные системы (по отраслям) 35.02.03. Технология деревообработки ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 21 1. Электроемкость. Конденсаторы. 2. Фотоны. Энергия и импульс фотона. 3. Тепловоз массой 130 т приближается со скоростью 2 м/с к неподвижному составу массой 1170 т. С какой скоростью будет двигаться состав после сцепления с тепловозом? Преподаватель \_\_\_\_\_\_\_/Г.В. Пантина/ Дисциплина/МДК: ПД.03. Физика Специальность (код, наименование): 21.02.04. Землеустройство 21.02.05. Земельно-имущественные отношения 08.02.01. Строительство и эксплуатация зданий и сооружений 08.02.05. Строительство и эксплуатация автомобильных дорог и аэродромов 09.02.04. Информационные системы (по отраслям) 35.02.03. Технология деревообработки ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 22 1 Постоянный ток. Законы постоянного тока. 2. Внешний и внутренний фотоэффекты. 3. Чему равна энергия связи ядра трития – изотопа водорода ${}^{3}_{1}H$ ? Преподаватель /Г.В. Пантина/

### Дисциплина/МДК: ПД.03. Физика Специальность (код, наименование): 21.02.04. Землеустройство 21.02.05. Земельно-имущественные отношения 08.02.01. Строительство и эксплуатация зданий и сооружений 08.02.05. Строительство и эксплуатация автомобильных дорог и аэродромов 09.02.04. Информационные системы (по отраслям) 35.02.03. Технология деревообработки ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 23 1. Изопроцессы: понятие, законы, графическое изображение. 2. Термоядерный синтез и условия его осуществления 3. Под каким углом следует направить луч на поверхность стекла, показатель преломления которого 1,54, чтобы угол преломления получился равным 30°? Преподаватель \_\_\_\_\_\_/Г.В. Пантина/ Дисциплина/МДК: ПД.03. Физика Специальность (код, наименование): 21.02.04. Землеустройство 21.02.05. Земельно-имущественные отношения 08.02.01. Строительство и эксплуатация зданий и сооружений 08.02.05. Строительство и эксплуатация автомобильных дорог и аэродромов 09.02.04. Информационные системы (по отраслям) 35.02.03. Технология деревообработки ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 24 1. Сила Ампера. Закон Ампера. 2. Деление тяжелых атомных ядер. Управляемая ядерная реакции. АЭС. 3. В баллоне емкостью 0,1 м<sup>3</sup> содержится углекислый газ при температуре 30°С и давлении 2 МПа. Какой объем будет занимать этот газ при нормальных условиях?

Преподаватель \_\_\_\_\_\_/Г.В. Пантина

#### Дисциплина/МДК: ПД.03. Физика

### Специальность (код, наименование):

- 21.02.04. Землеустройство
- 21.02.05. Земельно-имущественные отношения
- 08.02.01. Строительство и эксплуатация зданий и сооружений
- 08.02.05. Строительство и эксплуатация автомобильных дорог и аэродромов
- 09.02.04. Информационные системы (по отраслям)
- 35.02.03. Технология деревообработки

### ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 25

- 1 Электрический ток в газах
- 2. Состав атомных ядер, ядерные силы. Дефект масс. Энергия связи.
- 3. При какой температуре 0,08 кг кислорода в баллоне емкостью 20 л создают давление 300 кПа?

| Преподаватель | /Г.В. Пантина/ |
|---------------|----------------|
| -             | •              |